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ABSTRACT.  

This is a research announcement of the following result. Let E be a real normed linear space in which the 

single-valued normalized duality map is Holder continuous on balls and let A: E → E be a bounded 

generalized Φ-quasi-accretive map. A Mann-type iterative sequence is constructed and proved to converge 

strongly to the unique zero of A. In particular, our Theorems are applicable in real Banach spaces that 

include the Lp spaces, 1 < p < ∞. The Theorems are stated here without proofs. The full version of this 

paper, including detailed technical proofs of the Theorems will be published elsewhere. 
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1. INTRODUCTION 

Let E be a real normed linear space with dual E∗. A mapping A with domain D(A) and range R(A) in E 

is called accretive if for all x,y ∈ D(A), there exists j(x − y) ∈ J(x − y) such that 

(1.1) hAx − Ay,j(x − y)i ≥ 0, 

where J: E → 2E∗ is the normalized duality map on E. The operator A is said to be m−accretive if A is 

accretive and the range of (I +sA) is all of E for some s > 0. It can be shown that if R(I + sA) = E for 

some s > 0, then this holds for all s > 0. The operator −∆, where ∆ denotes the Laplacian is an 

m−accretive operator. 

The accretive operators were introduced independently in 1967 by Browder [1] and Kato [5]. Interest in 

such mappings stems mainly from their firm connection with the existence theory for nonlinear 

equations of evolution in Banach spaces. It is well known that many physically significant problems can 

be modelled in terms of an initial value problem of the form , where A is 

accretive in an appropriate real Banach space. Typical examples of such evolution equations are found 

in models involving the heat, wave or Schr¨odinger equation (see e.g., Browder [2]). At equilibrium, du
dt 

= 0, so that the evolution equation reduces to the equation: 

(1.2) Au = 0, 

whose solutions correspond to the equilibrium state of the system. 

Let H be a real Hilbert space and let f: H →R be a convex functional. Consider the subdifferential, ∂f: 

H → 2H defined by 

 
It is known that (e.g., Rockafellar[8]) and that∂f is a maximal monotone (0 ∈∂f,∂f(then 0u) if and only 

ifm∈−∂fmonotone) operator(u) reduces to theu is a critical point of f. Thus, if we set A:= inclusion 



(1.3) 0 ∈ Ax, x ∈ H, 

whose solutions correspond to the critical points of f. 

Since the operator A in equation (1.2) or inclusion (1.3) is generally nonlinear, considerable research 

efforts have been focused on iterative methods for approximating solutions of (1.2) or (1.3), assuming 

existence, when the operator A is of the accretive (or monotone) type. 

Let N(A): = {x ∈ E: Ax = 0} ≠ Ø. An operator A:D (A) ⊂ E → E is called generalized Φ−quasi-accretive 

if any x ∈ D(A), x∗ ∈ N (A), there exist j (x- x∗) ∈ J (x- x∗) such that [Ax-Ax∗, j (x- x∗)] ≥ Φ(||x − x∗||). 

The most general results for approximation of fixed points of uniformly continuous Φ− pseudo-

contractive-type mappings seem to be the following theorems. 

Theorem G1 ([7], Theorem 2.1) Let E be a real normed linear space, K be a nonempty subset of E and T: K → E 

be a uniformly continuous Φ−pseudo-contractive-type operator, i.e., there exist x∗ ∈ K and a strictly increasing 

function Φ : [0,∞J) → [0,∞), Φ(0) = 0h such that for all x ∈ K, there exist j(x- x∗) ∈ J (x- x∗) satisfying [ 

Tx – x*, j(x- x*)] ≤ || x- x*||2 – Φ(||x- x*||). (a) if y* ∈ K is a fixed point in K of T, then y* = x*, so T has at 

most one fixed point in K; (b) Suppose there exists x0 ∈ K such that both the ishikawa iterative sequence 

{xn} with error and the auxiliary yn = (1- βn) xn + βnTxn + vn, n ≥ 0, xn+1 = (1 – αn) xn + βnTxn + vn, n ≥ 0, 

xn+1 = (1 – αn) xn  + αnTyn  + un, are contained in K, where {un}, {vn} are two sequences in E and {αn}, {βn} 

are two sequences in { 0, 1} satisfying the following  conditions: (i) αn, βn →0 (n → ∞) and Ʃαn = ∞; (ii) 

||vn || → 0(n - ∞).  If {xn} is a bounded sequence in K, then {xn} converges strongly to x*. In particular, if 

y* is a fixed point of T in K, then {xn} converges to y*. 

Remark 1.2. The conditions on {un}, {vn} and {xn} in the Theorem 2.2 of [7] are as in Theorem G1. 

Theorem C1 ([6], Theorem 7.2.1, p.248) Let E be a real normed linear space, K be a nonempty convex 

subset of E such that K+K ⊂ K, and T: K → K be a uniformly continuous and Ꝋ–hemi-contractive mapping. 

Let {αn}, {βn} be two real sequences in (0, 1) satisfying the following conditions: (i) αn, βn → 0 (n - ∞), (ii) 

Ʃ αn = ∞. Assume that {un}, {vn} are two sequences in K satisfying the following conditions: un = u’
n + u

’’
n 

for any sequences {u’n}, {u’’
n} in K with Ʃ||u’

n|| ˂  ∞; || = 0(αn) and ||un|| → 0 as n → ∞. Define the Ishikawa 

iterative sequence with mixed errors in K by x0 ∈ K, yn = (1-β)xn + βnTxn + vn, n ≥ 0, xn=1 = (1- αn)xn + 

αnTyn + un. If {Tyn} is bounded, then the sequence {xn} converges strongly to the unique fixed point of T. 

Remark 1.3. The conditions in {un}, {vn} in Theorem 7.2.2 of [6] are as in Theorem C1. In that theorem, 

the sequence {Tyn} is required to be bounded. 

 

Remark 1.4.  

1. Theorems G1 and C1 are important generalizations of several results. We observe that the lass 

of mappings considered in theorem C1 is a proper subclass of the class of mappings studied in 

theorem G1 in which Φ(s) = sφ(s). However, the requirement that {xn} be bounded imposed in 



theorem G1 is stronger than the requirement that {Tyn} be bounded imposed in theorem C1. 

Furthermore, the boundedness of the sequences {xn}, {Tyn} or {Syn} imposed in these papers 

([6], [7]) are difficult to verify, ab initio, in any possible applications. 

2. It is well known that if an algorithm is applicable in establishing that the sequence of the 

algorithm converges strongly to a solution of a problem, the discussion of a more cumbersome 

algorithm for the same problem is completely undesirable unless, of course, if the cumbersome 

algorithm has significant advantages over the simpler one. For example, if the cumbersome 

algorithm converges significantly faster, or has a better error estimate. In particular, whenever 

the Mann algorithm works, any discussion of the so-called Ishikawa method is totally 

unnecessary. 

3. The addition of bounded error terms to either the Mann or the Ishikawa-type recursion formula 

leads to no generalization. The proofs of theorems in this case amount virtually to unnecessary 

repetition of the computations employed in the case when no error terms are included (see e.g., 

[3], Theorem 9.1, p.130). In fact, in Theorems G1 and C1 and other theorems of [6] and [7], the 

conditions imposed on the error terms are impossible to verify in any possible application 

because those terms are not known precisely. 

4. Existence theorems are generally proved in reflexive real Banach spaces. Consequently, it 

suffices to approximate solutions in such spaces. 

5. It is known that uniformly continuous maps defined on normed linear spaces are bounded (see 

e.g., a proof in Chidume et al., [4]). 

Let E be a real normed linear space in which the single-valued normalized duality map is Lipschitzian 

on balls and let A: E → E be a bounded generalized Φ−quasi-accretive map. 

We announce here that we have been able to construct an efficient Mann-type iterative algorithm and 

prove that the sequence of our algorithm converges strongly to the unique zero of A. Our theorems are 

applicable in q uniformly smooth real Banach spaces, q > 1. These spaces include the Lp spaces, 1 < p 

< ∞. More precisely, the following theorems are obtained. 

2. MAIN RESULTS 

Theorem 2.1. Let E be a real normed linear space in which the single valued normalized duality map 

is Holder continuous on balls and let A: E → E be a bounded generalized Φ−quasi-accretive map. For 

arbitrary x0 ∈ E, define a sequence {xn} by 

(2.1) (2.1) xn+1 = (1 − αn)xn + αnSxn n ≥ 0, 

where S: E → E is defined by                                                                            

is a sequence in (0, 1) satisfying the following conditions: lim αn = 0;                                                          

Then, there exists there exists γ0 ∈ R+ such that if αn ≤ γ0 ∀ n ≥ 0, {xn} converges strongly to the unique 

solution of the equation Au = 0. 

Theorem 2.2. Let E be a q-uniformly smooth real Banach space, q > 1, and A: E → E be a bounded 

generalized Φ−quasi-accretive map. For arbitrary x0 ∈ E, define a sequence {xn} by 



(2.2) (2.2) xn+1 = (1 − αn)xn + αnSxn n ≥ 0, 

where S: E → E is defined by  

sequence in (0,1) satisfying the following conditions: = 0; (ii) . Then there 

exists γ0 ∈ R+ such that if αn ≤ γ0 ∀ n ≥ 0, {xn} converges strongly to the unique solution of the equation 

Au = 0. 

Corollary 2.3. Let E:= Lp, 1 < p < ∞ and A : E → E be a bounded generalized Φ−quasi-accretive map. 

For arbitrary x0 ∈ E, define a sequence {xn} by 

(2.3) xn+1 = (1 − αn)xn + αnSxn n ≥ 0, 

where S: E → E is defined by is a sequence in (0,1) satisfying 

the following conditions: (  = 0; . Then, there exists γ0 ∈ R+ such that if αn ≤ 

γ0 ∀ n ≥ 0, {xn} converges strongly to the unique solution of the equation Au = 0. 

Remark 2.4. Our results in this paper, under the setting of our theorems, are significant improvements 

of Theorems G1 and C1 and a host of other recent results in the following sense: 

1. Since uniformly continuous maps defined on normed linear spaces are bounded, it follows that 

the class of bounded mappings considered in our theorems is much larger than the class of 

uniformly continuous maps considered in Theorems G1 and C1 

2. The recursion formula of the Mann-type considered in our paper is much simpler and more 

efficient than the Ishikawa-type recursion formulas considered in these papers. 

3. The boundedness of the sequence {xn} of the cumbersome Ishikawatype recursion formula, and 

for the restricted uniformly continuous maps imposed in Theorem G1 and in Theorem 2.1 of [7] 

is dispensed with in our theorems for the more general class of bounded maps, and superior Mann-

type iteration formula. Similarly, the boundedness condition on the sequence {Tyn} imposed in 

Theorems C1 and on {Syn} imposed in Theorem 7.2.2 of [6] is dispensed with in our theorems. 

The full version of this paper including the technical proofs of the above theorems and corollary will be 

published elsewhere. 

Prototype of the iteration parameter in all our theorems is αn =  . 
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