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ABSTRACT 

Unsteady state one dimensional flow of ground water induced by changes in 

water level in two channels bounding an isotropic homogeneous confined 

aquifer was studied. The water level in the two channels varies gradually with 

time and defined by mathematical functions with inbuilt time delay parameters. 

Exact solution to the problem was sought analytically, using the Laplace 

transform method. Results were obtained for pressure heads in error functions 

at various times and places in the aquifer. The equations obtained in the study 

were in agreement with those obtained by other researchers in previous studies. 

Using a numerical example, actual head values were determined for varying set 

values of delay parameters and these were plotted and compared. 
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INTRODUCTION 

Many situations do occur in the field in which a body of water in a channel 

interfacing an aquifer would constitute major sources of ground water recharge 

and flow in the aquifer. The water level in the channel could change either 

rapidly or slowly, depending on the pattern of pressure force causing the change. 

For instance, sudden release of water from remote sources due to water leakages 

or flood waves caused by intense precipitation of short duration would generate 

large surface flow leading to rapid build-up of water level in the river channel. 

Similar situations would be expected to occur, from either pumping operations 

in irrigation fields or, rapid withdrawal of water from surface reservoirs. In 

some instances, there would be gradual build-up of water level in reservoirs 

such as during operations in pumped-storage hydropower generation plants. 

  

On the other hand, the drying up of lakes and reservoirs adjoining an aquifer in 

dry regions due to high evaporation processes would also lead to slow decline 

in water level. On the global scale, there would be expected, gradual change in 
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water level, resulting from freezing and de-freezing of polar ice, caused by 

climate change. In coastal areas adjoining permeable rocks, flood waves 

generated by tidal oceans would raise the water level and induce ground water 

flow in aquifers. Although the changes in water level discussed herein take place 

in remote parts of the aquifer; however, the effects are transmitted either slowly 

or rapidly to all parts of the aquifer system, depending on the nature of change. 

 

The general problems of water level changes in channels, lakes and lagoons 

bounding confined aquifers have been studied by many hydrologists and 

researchers. There was also study of the groundwater flow in African Saharan 

aquifer system (Hammad, 1969) among many other studies in Africa. The 

results of the study established the pattern and general trend of ground water 

flow in the sub-Saharan region. Later (Marino,1974; Gill,1984), analytical 

solutions were derived for groundwater flow problems in confined and semi-

finite aquifers due to changes in channel water levels. Thereafter (Mustafa, 

1987, 2013), similar approaches were employed and in addition, there was 

introduced a practical dimension to the problems, by examining variations in 

groundwater flow induced by both surface infiltration/evaporation and changes 

in water level in bounding channels.  

 

With the recent advances in the application of GIS system in watershed 

modelling, 3-D groundwater flow modelling gained prominence, as more 

information can be obtained and processed on regional scale, on the nature, 

pattern, distribution and trend of groundwater flow in aquifers. There was 

applied (Gossel et al (2004) for instance, the GIS-based groundwater flow 

modelling technique to study the long-term groundwater flow in the Nubian 

sandstone aquifer in Eastern Sahara. The results of the studies established that, 

the Nubian Aquifer groundwater system, had been formed largely, by 

infiltration, during the 20,000-5,000(BP). The studies further showed that, the 

aquifer system, is a fossil aquifer and had been in unsteady state condition for 

the past 3,000 years. 

 

Of recent, the problem of surface and subsurface water interaction generally 

observed in coastal areas giving rise to moving water boundary was studied ( 

Kong et al.,2010). In the study, a moving water boundary was simulated by a 

ground water and surface water 2-D model. The resulting governing equations 

were however not amenable to analytical solution but, were solved numerically, 

using finite difference methods. 

On regional scale, due to its complexity, regional groundwater flow is usually 

studied by hydrologic mathematical catchment models. The most widely used 

groundwater model is, USGS finite different based MODFLOW. 

The versatility of the model has been enhanced greatly upon its successful 

integration with the Geographic Information System (GIS).  

 

The MODFLOW-2000 successfully employed (Hashemi et al., 2012) to study 

ground water flow under steady state conditions, to determine the recharging 

system in the Gareh-Bygone Plain in southern Iran. The study used the flood 



 

water spreading system that was established to recharge the ground water. The 

results established that, without surface water inflow, the plain was being 

recharged through a fault conducting water from the upper sub-basin. 

Also (Khadri and Pande, 2016) recently, the Mahesh River Basin in the Akola 

and Buddha districts of India was modelled, using MODFLOW model, in 

which, it was established that, the aquifer system was stable under 

the conditions prevailing at the time.  

 

Using the similar approach (Baalousha, 2016), MODFLOW model was 

successfully applied, to study groundwater flow for Qatar aquifers comprising 

of karst limestone containing cavities, sink holes and depressions, covering the 

country’s area of 11,586km2. The study estimated the amount of recharge and 

established the trend of groundwater flow, which was observed to be decreasing 

over the years. The study also established that, sea water intrusion was occurring 

in the coastal areas and that, there was lateral flow into Qatar, through its 

southern border with Saudi Arabia.  

 

In a similar study (Aniekan et al.,2014), MODFLOW model was applied to 

determine the mode and pattern of groundwater flow in the coastal aquifers 

of Akwa Ibom state, Nigeria. The study evaluated the recharge values for the 

six different zones studied and established that, there was high recharge 

occurring in the area and thus, showing high potential for ground water 

resources.  

 

Most groundwater flow modelling studies are largely carried out under the 

steady state flow conditions. However, it is observed that, on the contrary, 

groundwater flow in the field is generally unsteady and transient.  

 

Few researchers of recent (Hong Niu et.al., 2015) employed analytical methods 

to study the flow of ground water under unsteady steady state. The findings on 

the whole, showed that, when time was large enough, the flow distribution under 

unsteady state conditions tended to the steady state flow.  

 

The problem presented in this study is, aimed at determining the pattern of flow 

resulting from time delayed water level changes taking place in two channels 

bounding a semi-finite artesian aquifer. A mathematical representation of the 

problem is shown in Fig.1 for which analytical solution was sought. 

MATHEMATICAL REPRESENTATION OF THE PROBLEM 

In the study presented, a situation is visualized in which, the water levels in both 

the LHS and RHS channels shown in Fig.1 were initially at the same level, the 

datum. Thereafter, both levels change gradually, as to induce ground water flow 

into the adjoining aquifer. 

 

A solution is sought on the nature and distribution pattern of groundwater flow 

resulting from the water level changes under unsteady state conditions using 



 

boundary conditions specified by mathematical functions with inbuilt delay 

parameters. 

 

The generalized ground water flow equation results from combining continuity 

equation (mass balance) with Darcy’s law. Thus, for inhomogeneous and 

anisotropic confined aquifer, the continuity equation(Trescott and Larson, 

1977) is, 
 

-{
𝜕

𝜕𝑥
(qx) +

𝜕

𝜕𝑦
(qy) + 

𝜕 

𝜕𝑧
  (qz)} +Q = Ss

𝜕ℎ

𝜕𝑡
    (1) 

 

Q is pumping or injection of a vol. of flux (L3/T per vol.(L3)) and Ss is specific 

storage (L-1). 

Combining Equation (1) with Darcy’s law {qx = - Kx  
𝜕ℎ

𝜕𝑥
  , qy = - Ky  

𝜕ℎ

𝜕𝑦
  and  qz = - Kz  

𝜕ℎ

𝜕𝑧
 }  is obtained, for homogeneous hydraulic conductivity, i.e. independent of x, y 

and z, anisotropic confined aquifer without pumping or recharge 

Kx ∂2h/∂x2 + Ky ∂2h/∂y2 + Kz ∂2h/∂z2 = Ss ∂h/∂t    (2) 

For homogeneous and isotropic aquifer, i.e., Kx = Ky = Kz = K, Eq. (2) reduces to  

∂2h/∂x2 + ∂2h/∂y2 + ∂2h/∂z2   = (Ss/K) ∂h/∂t    (3) 

Thus, the general groundwater flow equation for homogeneous and isotropic aquifer 

is given by 

K∇2h = Ss 𝜕h/𝜕𝑡       (4a) 

For aquifer of constant thickness b Eq.4a is expressed as  

b(K∇2h) = b(Ss 𝜕h/𝜕𝑡)   or  

T∇2h = S 𝜕h/𝜕𝑡  →   ∇2h = (S/T) 𝜕h/𝜕𝑡     (4b) 

Such that, T = bK and S = b Ss whereas, S is dimensionless and T(L2/T) 

∇2 is the Laplacian operator =  𝜕2/ 𝜕x2 + 𝜕2/ 𝜕y2 + 𝜕2/ 𝜕z2   

For 3- dimensional homogeneous isotropic and uniform thickness confined aquifer, 

the groundwater flow equation is given by  

𝜕2h/ 𝜕x2 + 𝜕2h/ 𝜕y2 + 𝜕2h/ 𝜕z2   = (S/T) 𝜕h/𝜕𝑡               (4c) 

If there is no flow in the vertical direction and flow is only in one dimension, the x 

axis, Eq.4c reduces to 

𝜕2h/ 𝜕x2   = (S/T) 𝜕h/𝜕𝑡  = (1/∝) 𝜕h/𝜕𝑡       (4d) 

S is the storage coefficient, T is the transmissibility,  

 ∝ = 𝑇/𝑆, a coefficient , b is aquifer thickness and x, y, z orthogonal direction 



 

 
Equation (4d) is a Partial Differential Equation (PDE) 

In seeking solution to the PDE, the boundary conditions must be specified, in addition 

to the initial conditions. The following boundary and initial conditions apply herein 

h (x,0) = 0                     t ≤ 0             - (5a) 

h (0,t) =     Ho[ 1+  exp (𝜁𝑡) erfc(√𝜁𝑡)]                         t > 0  - (5b) 

h (L,t) =     Ho[ 1+  exp ( µ𝑡) erfc(√ µ𝑡)]                       t > 0  -            (5c) 

This means, the head h, in the channels at x = 0 and at x = L will change after time t > 

0 while, 

 𝜁 and  µ are introduced as time delay parameters.  

Let us define ꝋ2  = 𝜁  and  β2= µ 

Let solution be sought by taking the Laplace transform of Eq.4d, and Eqs.5(a-c) thus: 

L  {h(x,t) } = h(x,p)  

where p is the transform time                           

Hence, the solution for Eq.4d is put in the form:  
h (x , p) = C1cosh( 𝜑𝑥)  +C2 sinh( 𝜑𝑥)                                                       -               (6) 

where   𝜑  = (p/𝛼)1/2 and  C1 and C2 are constants 

Now, from Eq. (5b):    h (0, p)       =  H0 {
1

𝑝
+  

1

√𝑝(√𝑝+ꝋ)
 }               -  (7a) 

and from Eq. (5c):     h( L, p) = H0 {
1

𝑝
+  

1

√𝑝(√𝑝+𝛽)
 }                 -  (7b) 

Putting these into Eq.6, the values of the constants are obtained as 

   C1  = H0 {
1

𝑝
+  

1

√𝑝(√𝑝+ꝋ)
 } and   C2 = H0  [{

1

𝑝
+ 

1

√𝑝(√𝑝+ꝋ)
 } – {

1

𝑝
+

 
1

√𝑝(√𝑝+𝛽)
 }

cosh (𝜑L)

sinh (𝜑L)
]   -   (8)                     

For brevity, let 𝜙1    = {
1

𝑝
+  

1

√𝑝(√𝑝+ꝋ)
 } and 

𝜙2   =  {
1

𝑝
+ 

1

√𝑝(√𝑝+𝛽)
 }    such that, 

C1 = 𝜙1   and   C2 =  (
1

sinh(𝜑L)
){𝜙2  −   𝜙1cosh(𝜑L)} 

After rearranging Eq.6 after putting the values of the constants C1 and C2, 

h( x ,p ) = H0 {𝜙1   
sinh 𝜑(𝐿−𝑥)

sinh (𝜑𝐿)
 + 𝜙2 

 sinh (𝜑𝑥)

𝑠𝑖𝑛ℎ(𝜑𝐿)
 }        - (9)                 

Now, using Binomial series expansion and after some algebraic rearrangement of 

Eq.6 gives for the term, 



 

𝜙1  
sinh 𝜑(𝐿−𝑥)

sinh(𝜑𝐿)
 = 𝜙1 {∑ [exp −𝜑(2𝑛𝐿 − 𝑥)]∞

𝑛=0  + ∑ [𝑒𝑥𝑝 − 𝜑(2𝑛𝐿 + 𝑥)]∞
𝑛=0 }                  

- (10a) 

And the term, 

  𝜙2 
sinh (𝜑𝑥)

𝑠𝑖𝑛ℎ(𝜑𝐿)
    =  𝜙2{∑ [exp −𝜑(2𝑛𝐿 + 𝐿 − 𝑥)]∞

𝑛=0  +  ∑ [𝑒𝑥𝑝 − 𝜑(2𝑛𝐿 + 𝐿 +∞
𝑛=0

𝑥)]  }  -     (10b) 

h(x,t) = L - 1 {h(x,p) } 

For the term with 𝜙1 , the Inverse Laplace transform is 

L - 1 {𝜙1  
sinh 𝜑(𝐿−𝑥)

sinh(𝜑𝐿)
 }   which is rewritten as 

 L – 1{
1

𝑝
+  

1

√𝑝(√𝑝+ꝋ)
 } {∑  [exp −𝜑(2𝑛𝐿 − 𝑥)]∞

𝑛=0  +  ∑  [𝑒𝑥𝑝 − 𝜑(2𝑛𝐿 + 𝑥)]∞
𝑛=0 } 

For the terms with  
1

𝑝
  upon inverting and replacing 𝜑 𝑏𝑦  √αt , the solution is given 

by 

  ∑ {∞
n=0  erfc ((2nL- x)/2√αt )} + ∑  {∞

n=0  erfc ((2nL+𝑥)/2√αt ))}  -     (11a) 

Similarly, for the terms with 
1

√𝑝(√𝑝+ꝋ)
 upon inversion and replacing  

the values of ꝋ, 𝛃  with  those of ζ  and µ respectively, give 

∑ exp∞
n=0  [𝜁t + (2nL-x)√𝜁 /α] ∑  ∞

n=0 erfc [(2nL-x)/2√αt + √𝜁t ]  

+ ∑ exp∞
n=0 [𝜁t + ((2𝑛𝐿 + 𝑥)√𝜁 /α) ] ∑  ∞

n=0 erfc[(2nL+x)/2√αt + √𝜁t ] -    (11b)                    

Similar approach for the terms with 𝜙2  , taking the inverse transform: 

L – 1{𝜙2 
sinh (𝜑𝑥)

𝑠𝑖𝑛ℎ(𝜑𝐿)
    } = L – 1{

1

𝑝
+  

1

√𝑝(√𝑝+𝛽)
} {

∑ [exp −𝜑(2𝑛𝐿 + 𝐿 − 𝑥)]∞
𝑛=0  

+ ∑ [𝑒𝑥𝑝 − 𝜑(2𝑛𝐿 + 𝐿 + 𝑥)]∞
𝑛=0

} 

For the terms with  
1

𝑝
   would give 

∑ erfc∞
n=0 [((2𝑛 + 1)𝐿 − 𝑥)/2√αt] + ∑ erfc∞

n=0 [((2𝑛 + 1)𝐿 + 𝑥)/2√αt] -     (11c) 

And for the terms with  
1

√𝑝(√𝑝+𝛽)
 would give 

  ∑ [exp [µ𝑡 + (2n + 1)L − x]√µ/α] ∑  ∞
n=0

∞
n=0 erfc[((2n+1)L-x)/2√αt + √µt]  

+ ∑ [exp [µ𝑡 + (2n + 1)L + x)]√µ/α]∞
n=0 ∑  ∞

n=0 erfc [(2n+1)L+x)/2√αt + √µt) ]   

- ( 11d)  

The total solution for head h(x, t) is obtained by adding Eq.11(a-d) to give  

h(x,t)= H0 {∑  ∞
n=0 erfc [(2nL- x)/2√αt ] +∑  ∞

n=0 erfc [(2nL+𝑥)/2√αt ] 

+ ∑ exp∞
n=0  [𝜁t + (2nL-x)√𝜁 /α] ∑  ∞

n=0 erfc [(2nL-x)/2√αt + √𝜁t ]  

+ ∑ exp∞
n=0 [𝜁t + (2𝑛𝐿 + 𝑥)√𝜁 /α ] erfc∑  ∞

n=0 [(2nL+x)/2√αt + √𝜁t ]  

+ ∑ erfc∞
n=0 [((2𝑛 + 1)𝐿 − 𝑥)/2√αt] + ∑ erfc∞

n=0 [((2𝑛 + 1)𝐿 + 𝑥)/2√αt] 

+ ∑ [exp [µ𝑡 + (2n + 1)L − x]√µ/α]∞
n=0 ∑  ∞

n=0 erfc [((2n+1)L-x)/2√αt + √µt]  

+ ∑ [exp [µ𝑡 + (2n + 1)L + x)]√µ/α] ∑  ∞
n=0

∞
n=0 erfc [((2n+1)L+x)/2√αt + √µt] }   

- (12) 

where,  

erf(x) = 1 – erfc(x) and erf(x)   =
2

√𝜋
∫  

𝑥

0
e − 𝜏 dt        -         (13a) 

where 𝜏 = t2  

The values of the function can be obtained in standard mathematical handbooks. 

Using Taylor series expansion and integrating the error function, gives 

erf(x) = 1-
1

√𝜋
-ex2 {1/x  -  2/x3  +  (1.3)/(23x5)  -  (1.3.5)/(23x7)  + ……} -    (13b) 

From Abramowitz and Stegun (1992), an approximation of the function is 

erf(x)  = 1  -  1/(1 + a1x + a2x2 + a3x3 + a4x4)4    + e(x)     -  (13c) 

Such that,   |𝑒(𝑥)| ≤   5 X 10-4 

Constants a1, a2, a3 and a4 are obtained from rational fitting of weights thus:  



 

a1= 0.278393, a2= 0.23030389, a3 = 0.000972 and a4 = 0.078108 

The error function complimentary takes special values at 

erfc(0) =1 ; erfc (∞) =0 and erfc(−∞) = 2 

Discussion of Results 

In the case the delay constants ζ and µ take zero values, that is ζ = µ  = 0 

Eq.12 simply reduces to  

h(x,t)=2 H0 {∑  ∞
n=0 erfc [(2nL- x)/2√αt ] +∑  ∞

n=0 erfc [(2nL+𝑥)/2√αt ] + 

∑ erfc∞
n=0 [((2𝑛 + 1)𝐿 − 𝑥)/2√αt] + ∑ erfc∞

n=0 [((2𝑛 + 1)𝐿 + 𝑥)/2√αt] }     -   (14) 

Which means the flow is caused by head Hoonly at both left and right-hand side 

boundaries, giving results similar to the ones and obtained in earlier studies (Gill 

,1984 and Mustafa, 1987- 2013). 

Numerical Example 

A numerical example is given for the solution in which typical aquifer values and 

constants were assigned to parameters in Eq.12. To obtain the head distribution in the 

aquifer at various time intervals, the distance between the channels is set at, L= 

1000m. Time t is practical time in days and set at, t = 1 day, 2 days, 5 days, 100, days, 

200 days, . . 1000 days. The head causing flow Ho is fixed at, 10m. This value is 

sufficient to generate determinable flow in the aquifer system. 

Using a typical aquifer parameter  𝜶  = 12,000m2/day, the value for the delay constant 

at a start was put at  ꝋ = 0.000001 and then increased to 0.000005, 0.00005 and 0.005. 

Likewise, the other delay parameter 𝛃  was fixed at a value 0.0001 and then increased 

to 0.01. Using MS- EXCEL, the various heads were calculated at distances fixed at x 

= 10m, 200m, 400m, 600m, . . 1000m from Eq. 12, using the approximation formula 

obtained for the error function given in Eqs.13 (a-c). The resulting head distributions 

at different places in the aquifer were evaluated and plotted in Figs.2(a-d)  and shown 

in the Appendix.  

The values of head at both left and right-hand side channels are not fixed but controlled 

by the delay parameters ꝋ and 𝛃  as reflected in spread of head. However, it would 

appear, that delay parameter ꝋ  tends to be more sensitive and defining the pattern of 

flow. Overall, the pattern of head distribution in the long run become uniform albeit, 

with varying magnitudes. The head causing flow is from both boundaries, the direction 

of flow determined by the delay parameters.  At the initial time, the head values do not 

change appreciably until after considerable time interval as dictated by the delay 

parameters. 

 

Conclusion 

The problem of flow situation in finite artesian aquifer in which the level of water in 

two channels bounding an aquifer change was investigated. The change takes place 

gradually, over time, defined by delay parameters; for which, solutions were obtained, 

using Laplace transform method. Analytical solutions for the problem studied were 

given in error functions. A numerical example was given in which at various time 

intervals the head distribution in the aquifer at different places was calculated using 

MS-Excel computer program. These solutions would help to understand the nature of 

ground water flow resulting from sudden inflow of surface water, such as caused by 

delayed flood water, or tidal waves generated in coastal areas. 
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Notations 

H0 , h = head in aquifer - (L) 

𝛼 =T/S - (L2T -1) 

qx , qy , qz = flux - (LT-1) 

Q = pumping or recharge flow- (L3/T per vol. L3) 

Kx , Ky , Kz , K = hydraulic conductivity- (LT-1)  

T = transmissibility - (L2T -1)  

Ss = Specific Coefficient (L-1) 

S= Storativity of the aquifer - (storage coefficient; dimensionless) 

𝜑 = (p/𝛼)1/2 - (L-1) 

p = parameter in Laplace transform - (T -1) 

L  = distance separating the two bounding channels - (L) 

ꝋ, 𝛽 = time delay parameters - (T -1/2) 

𝜁  and  µ = time delay constants - (T -1) 

𝜙1 , 𝜙2 - (T) 

𝑡, 𝜏= time - (T) 

C1 and C2 are constants in Laplace transform - (LT) 
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APPENDIX 

Figs. 2(a-d) Showing head distribution for various values of delaying parameters 

ꝋ 𝐚𝐧𝐝 𝛃 
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Fig.2a Head Distribution: h(x,t),  for β=0.01, θ=0.005
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Fig.2b Head distribution: h(x,t), for  β=0.01, θ=0.00005
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