Pharmacognostic study and peptidomic analysis of the leaves of Nigerian Rauvolfia vomitoria Wennberg (Apocynaceae)

Gideon Alade(1), Francis A. Attah(2),


(1) Department of Pharmacognosy and Herbal Medicine, Niger Delta University, Wilberforce Island, Nigeria
(2) Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
Corresponding Author

Abstract


This study was aimed at documenting some pharmacognostic and peptidomic standards on the leaf of Nigerian species of Rauvolfia vomitoria Wennberg (RVM). Using standard methods, the fresh and dried pulverized leaves of R. vomitoria were standardized macroscopically and microscopically, in addition to the physiochemical evaluation and MALDI TOF/TOF-guided peptidomic screening of the aqueous extracts of the leaf. The leaf is simple, elliptical shaped, crenated margin which is acute. The leaf presented a hexagonal shaped epidermal cell on both sides with anomocytic stomata only on the abaxial surface making it hypostomatous while stomata number and index are 15 – 16 – 18 and 24 – 25 – 26, respectively. The transverse section of the leaf through the midrib suggests that the vascular bundles are conjoint, collateral and closed. Moisture content, total ash, acid insoluble ash, water soluble ash, sulphated ash, water soluble and alcohol soluble extractives were as follows; 7.7 ± 1,5, 4.9 ± 0.7, 1.2 ± 0.8, 4.1 ± 0.2, 4.8 ± 0.9, 3.9 ± 0.9, 8.1 ± 1.7w/w%, respectively. Peptidomic analysis revealed the abundant expression of nature-derived knottin-like peptides with a mass range of 3.1 kDa – 3.7 kDa. Knottin peptides have been reported to perform defense roles in host plants; since they are not ubiquitously distributed in planta, their detection in RVM could be useful in the proper identification of the plant and in RVM chemosystematics.

Findings from this study has unveiled some important macroscopic, microscopic and physicochemical standards as well as a new peptidomic phytochemical standard helpful in the proper identification in addition to ensuring the efficacy and safety of the leaf of R. vomitoria.


Keywords


Rauvolfia vomitoria, Macroscopy, microscopy, physicochemical evaluation, knottin-like peptides

References


Prasanth DSNBK, Rao AS, & Prasad YR (2017). Pharmacognostic standardization of Aralia racemosa L. stem. Indian Journal of Pharmaceutical Sciences, 79(2), 220-226. [https://doi.org/10.4172/pharmaceutical-sciences.1000220]

World Health Organization. (1998). Quality control methods for medicinal plant materials. World Health Organization.

PNgAS. Vol 16, No 1, 2023 83

Swain H, Gantait S, & Mandal N (2023). Developments in biotechnological tools and techniques for production of reserpine. Applied Microbiology and Biotechnology, 1-12. https://doi.org/10.1007/s00253-023-12570-9

Amole OO & Onabanjo AO (1999). Antipyretic effect of Rauwolfia vomitoria in rabbits. Nigerian Journal of Natural Products and Medicine, 3, 77=78. [ https://doi.org/10.4314/njnpm.v3i1.11768]

Kutalek R & Prinz A (2007) African medicinal plants. In Yaniv, Z. and Bachrach, U. (Eds.). Handbook of medicinal plants, New Delhi, CBS Publishers; pp. 145.

Gill LS (1992) Ethnomedical uses of plants in Nigeria. UNIBEN Press, Benin City, Nigeria; pp 204.

Ebuehi OAT & Aleshinloye OO (2010) Extracts of Cnestis ferruginea and Rawolfia vomitoria affect blood chemistry and GABAergic neurotransmission in ketamine-induced psychotic rats. Nigerian Quarterly Journal of Hospital Medicine; 20(4):171-176. [https://doi.org/10.1096/fasebj.25.1_supplement.764.4

Surendran S, Raju R, Prasannan P, & Surendran A (2021). A Comprehensive Review on Ethnobotany, Phytochemistry and Pharmacology of Rauvolfia L.(Apocynaceae). The Botanical Review, 87(3), 311-376. https://doi.org/10.1007/s12229-021-09262-2

Fatoba PO, Adeyemi SB, Adewole AA, & Fatoba MT (2018). Medicinal plants used in the treatment of infant diseases in south western Nigeria. Nigerian Journal of Basic and Applied Sciences, 26(1), 14-22. DOI: 10.4314/njbas.v26i1.2

Tekwu EM, Bosompem KM, Anyan WK, Appiah-Opong R, Owusu KBA, Tettey MD, & Nyarko AK (2017). In vitro assessment of anthelmintic activities of Rauwolfia vomitoria (Apocynaceae) stem bark and roots against parasitic stages of Schistosoma mansoni and cytotoxic study. Journal of parasitology research, 2017.| https://doi.org/10.1155/2017/2583969

Kumar S & Singh B (2023). An Overview on Bioactives and Pharmacology of Rauvolfia vomitoria Afzel. Bioactives and Pharmacology of Medicinal Plants, 303-312. 1st edition. Apple Academic Press; eBook ISBN9781003281702

Erasto P, Lubschagne A, Mbwambo ZH, Nondo RS, & Lall N (2011). Antimycobacterial, antioxidant activity and toxicity of extracts from the roots of Rauvolfia vomitoria and R. caffra. [https://doi.org/10.5455/SPATULA.20110514043359]

Adebayo AA, Ademosun AO, & Oboh G (2023). Chemical composition, antioxidant, and enzyme inhibitory properties of Rauwolfia vomitoria extract. Journal of Complementary and Integrative Medicine, (0). https://doi.org/10.1515/jcim-2022-0390

Cynthia NB (2018). Antiplasmodial activity and acute oral toxicity of Rauvolfia vomitoria leaves extracts. IJPR, 8(07); 56-62. [https://doi.org/10.7439/ijpr.v8i7.4780]

Amole OO & Onabanjo AO (1999). Antipyretic effect of Rauwolfia vomitoria in rabbits. Nigerian Journal of Natural Products and Medicine, 3, 77-78. DOI: 10.4314/njnpm.v3i1.11768

Okon KA, Bassey EI, Edem GD, & Ekanem KN (2020). Histological study of the monosodium glutamate (MSG) and root back extract of Rauvolfia vomitoria on the kidney of albino rats. Asian Journal of Research in Nephrology, 3(2), 33-39. http://eprints.stmarchives.com/id/eprint/406

Abere TA, Ojogwu OK, Agoreyo FO, & Eze GI (2014). Antisickling and toxicological evaluation of the leaves of Rauwolfia vomitoria Afzel (Apocynaceae). Journal of Science and Practice of Pharmacy, 1(1), 11-15. http://www.jsppharm.org/home/index.php

Okpako DT (1991). Principles of Pharmacology: A Tropical Approach. New York, Cambridge University Press.

Surendran S, Raju R, Prasannan P, & Surendran A (2021). A Comprehensive Review on Ethnobotany, Phytochemistry and Pharmacology of Rauvolfia L. (Apocynaceae). The Botanical Review; 1-66.

Oreagba IA, Oshikoya KA, & Amachree M (2011). Herbal medicine use among urban residents in Lagos, Nigeria. BMC Complementary and Alternative medicine, 11, 1-8. https://doi.org/10.1186/1472-6882-11-117.

Emencheta SC, Enweani BI, Oli AN, Ibezim EC, & Imanyikwa IEO (2020). Antimicrobial Evaluation of plant parts of Rauwolfia vomitoria. Journal of Complementary and Alternative Medical Research; 11-20.

Elisée TS (2021). Ethnobotanical Studies of Plants with Antihypertensive Properties in the City of Nkongsamba, Cameroon. Saudi J Med Pharm Sci, ; 7(6), 251-261. https://doi.org/10.36348/sjmps.2021.v07i06.005]

Chauhan S, Kaur A, & Pareek RK (2017). Pharmacobotanical and pharmacological evaluation of ayurvedic crude drug: Rauwolfia serpentina (Apocynaceae), International Journal of Green Pharmacy; 11(4):S686.

Rungsung W, Dutta S, Mondal DN, Ratha KK, & Hazra J (2014). Pharmacognostical profiling on the root of Rauwolfia Serpentina, International Journal of Pharmacognosy and Phytochemical Research; 6(3):612-616.

Costa AF, Vale JC, & Vale MAM (2014). Pharmacognostic study of the roots of R. vomitoria from Angola, Garcia de Orta, 1960; 8(1): 81-105.

Adom E, Ekuadzi E, Boakye-Gyasi E, & Amponsah IK (2022). Pharmacognostic evaluation of three Apocynaceae plants that share the same West African local names. Phytomedicine Plus, 2(1), 100157.

Kraus JE & Arduin M (1997). Basic manual of plant morphology methods, Rio de Janeiro: EDUR.

British Pharmacopoeia (1973). Appendix X A, A88-A89.

Attah FA, Hellinger R, Mubo AS, Jones OM, Arrowsmith S, & Wray S, et al. (2016). Ethobotanical survey of Rinorea dentata (Violaceae) used in South-Western Nigerian ethnomedicine and detection of cyclotides. Journal of Ethnopharmacology, 179, 83-91. doi: 10.1016/j.jep.2015.12.038. [https://doi.org/ 10.1016/j.jep.2015.12.038]

Reinwarth M, Nasu D, Kolmar H, & Avrutina OJM (2012). Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides—promising scaffolds for applications in drug design;17(11):12533-52. [https://doi.org/10.3390/molecules171112533]

Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, & Chamcheu JC (2022). Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. Plants, 11(23), 3271. https://doi.org/10.3390/plants11233271

Sharma D, Singh D, Sharma SK, Sharma S, Chandrawat P, & Sharma R (2012). Epidermal studies of some plants of Family Apocynaceae, Asian Journal of Biochemical and Pharmaceutical Research Issue; 2(1):231-236.

European pharmacopoeia (2007). Guide for the Elaboration of monographs on herbal drugs and herbal preparations, ; p 13-14.

Zhan G, Miao R, Zhang F, Wang X, Zhang X, & Guo Z (2020). Cytotoxic yohimbine‐type alkaloids from the leaves of Rauvolfia vomitoria. Chemistry & Biodiversity; 17(12), e2000647. [https://doi.org/10.1002/cbdv.202000647]

Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Goransson U, & Craik DJ (2008). Distribution and evolution of circular miniproteins in flowering plants. The Plant Cell, 20(9), 2471-2483.

Poth AG, Mylne JS, Grassl J, Lyons RE, Millar AH, Colgrave ML, & Craik DJ (2012). Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae). Journal of Biological Chemistry, 287(32), 27033-27046. [https://doi.org/10.1074/jbc.M112.370841

Slazak B, Kapusta M, Malik S, Bohdanowicz J, Kuta E, Malec P, & Göransson U (2016). Immunolocalization of cyclotides in plant cells, tissues and organ supports their role in host defense. Planta, 244, 1029-1040.

Kumari G, Wong KH, Serra A, Shin J, Yoon HS, Sze SK, & Tam JP (2018). Molecular diversity and function of jasmintides from Jasminum sambac. BMC plant biology, 18, 1-13. [https://doi.org/10.1186/s12870-018-1361-y]

Koehbach J, Attah AF, Berger A, Hellinger R, Kutchan TM, Carpenter EJ, & Gruber CW (2013). Cyclotide discovery in Gentianales revisited—identification and characterization of cyclic cystine‐knot peptides and their phylogenetic distribution in Rubiaceae plants. Peptide Science, 100(5), 438-452.. [https://doi.org/10.1002/bip.22328]

Gressent F, Da Silva P, Eyraud V, Karaki L, & Royer CJT (2011). Pea Albumin 1 subunit b (PA1b), a promising bioinsecticide of plant origin. 2011;3(12):1502-17. [https://doi.org/10.3390/toxins3121502]

Eyraud V, Karaki L, Rahioui I, Sivignon C, Da Silva P, Rahbé Y, & Gressent F (2013). Expression and biological activity of the cystine knot bioinsecticide PA1b (Pea Albumin 1 Subunit b). PLoS One, 8(12), e81619. https://doi.org/10.1371/journal.pone.0081619

Slazak B, Kaltenböck K, Steffen K, Rogala M, Rodríguez-Rodríguez P, Nilsson A, & Göransson U (2021). Cyclotide host-defense tailored for species and environments in violets from the Canary Islands. Scientific Reports, 11(1), 12452. https://doi.org/10.1038/s41598-021-91555-y

Muyumba NW, Mutombo SC, Sheridan H, Nachtergael A, & Duez P (2021). Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open, 4, 100070.


Full Text: PDF

Article Metrics

Abstract View : 169 times
PDF Download : 74 times

DOI: 10.57046/CUOI3523

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Proceedings of the Nigerian Academy of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.