Metabolic and hematological disruptions induced by Diphenyl Diselenide in male wistar rats

Joseph A. Olagunju(1), Gabriel O. Ajayi(2), Babatunde A. Murtala(3), Adejuwon A. Adeneye(4),


(1) Lagos State University College of Medicine, Ikeja, Lagos State
(2) Lagos State University College of Medicine, Ikeja, Lagos State & Mountain Top University
(3) Lagos State University College of Medicine, Ikeja, Lagos State
(4) Lagos State University College of Medicine, Ikeja, Lagos State
Corresponding Author

Abstract


Diphenyldiselenide (DPDS), a potent antioxidant and enzyme inhibitor, exerts cellular toxicity mainly through interaction with thiol group of proteins. This study evaluates its toxicity on glycolysis and gluconeogenesis as well as on some hematological parameters in male Wistar rats. Animals were grouped into five with Groups I and II animals intrapenitoneally dosed with 1ml/kg body weight distilled water and olive oil serving as controls while Groups III, IV and V animals were treated with DPDS in olive oil once daily for 21 days at the dose of 50-, 100- and 200mg/kg body weight respectively. All rats were sacrificed on day 21, and plasma, livers and thigh muscles harvested for biochemical assays. Treatment with 200mg DPDS/kg body weight resulted to 100% mortality while 50- and 100mg/kg body weight caused significant reduction (p<0.05) in red blood cell counts, hemoglobin concentration and packed-cell volume. The activities of thigh muscle key glycolytic enzymes along with plasma lactate and liver key gluconeogenic enzymes along with alanine- and aspartate aminotransferases and glycogen were significantly increased (p<0.05) suggesting increased glycolysis and gluconeogenesis respectively in these organs. The increased glycolysis observed may be a consequence of decreased oxygen transport to the peripheral tissue due to reduced hemoglobin hence, increased reliance on anaerobic sources for energy generation. The resultant increased gluconeogenesis and hepatic glycogen storage could be a detoxification mechanism whereby excess lactate due to increased glycolysis is converted to a non-toxic and neutral glucose to maintain pH balance in order to preserve the animals against DPDS toxicity

Keywords


Diphenyl diselenide toxicity, gluconeogenesis, glycolysis, compensatory change

References


Alramadhani D, Aljahdali AS, Abdulmalik O, Pierce BD, & Safo, MK (2022). Metabolic reprogramming in sickle cell diseases: pathophysiology and drug discovery opportunities. Int. J. Mol. Sci. 23(13):7448.

American Physiological Society (2002). Guiding Principles for Research Involving Animals and Human Beings. Am. J.Physiol. Reg.Integr. Comparative Physiol.283: R281 – R283.

Arteel GE & Sies H (2001). The biochemistry of selenium and the glutathione system. Env.Toxicol. Pharmacol.10: 153 – 158.

Balcerek B, Steinach M, Lichti J, Maggioni MA, Becker PN, Labes R, Gunga HC, Persson PB, & Fähling M (2020). A broad diversity in oxygen affinity to haemoglobin. Sci. Rep.10: 16920.

Balegar VKK, Jayawardhana M, Martin AJ, de Chazal P, & Nanan RKH (2022). Hierarchical improvement of regional tissue oxygenation after packed red blood cell transfusion. PLoS ONE17(7): e0271563.

Barbosa NB, Rocha JB, Wondracek DC, Perottoni J, Zeni G, & Nogueira CW (2006). Diphenyldiselenide reduces temporarily hyperglycemia: possible relationship with oxidative stress. Chem. Biol. Inter163: 230 – 238.

Bergonia HA, Franklin MR, Kushner JP, & Phillips JD (2015). A method for determining δ-aminolevulinic acid synthase activity in homogenized cells and tissues. Clin.Biochem.48(12): 788-795.

Bergmeyer HU (1963). Lactic dehydrogenase. In: Methods in Enzymatic Analysis. Academic Press Inc. New York. pp. 736 – 743.

Biochemica Merck (1970a). Hexokinase (from rabbit muscle) crystal suspension (2000 mg/protein corr. to 200U/mg protein), Merck Danstadt, Germany. pp. 36.

Biochemica Merck (1970b). Pyruvate kinase (from yeast) crystal suspension (1400U/L corr. to 140 U/mg protein), Merck Danstadt, Germany. pp 22 – 23.

Brust H, Orzechowski S, & Fettke J. (2020). Starch and glycogen analyses: methods and techniques. Biomolecules10(7):1020.

Chan YL, Han ST, Li CH, Wu CC, & Chen KF (2017). Transfusion of red blood cells to patients with sepsis. Int. J. Mol. Sci.18(9): 1946

Clark J (1964). Experimental Biochemistry. Freeman WH and Co., San Francisco, U.S.A. pp. 68-72.

Della Rocca Y, Fonticoli L, Rajan TS, Trubiani O, Caputi S, Diomede F, Pizzicannella J, & Marconi GD (2022). Hypoxia: molecular pathophysiological mechanisms in human diseases. J.Physiol.Biochem.78: 739-752.

Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, & Sharma A (2022). Therapeutic benefits of selenium in hematological malignancies. Int. J. Mol. Sci.23(14):7972.

Gonzalez JT, Fuchs CJ, Betts JA, & van Loon LJC (2016). Liver glycogen metabolism during and after prolonged endurance-type exercise. Am. J. Physiol.-Endocrinol. Metab. 311(3): E543-E553.

Huang XJ, Choi YK, Im HS, Yarimaga O, Yoon E, & Kim HS (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6(7): 756-782.

Jermyn MA (1975). Increasing the sensitivity of the anthrone method for carbohydrate. Analy.Biochem.68: 332 – 335.

Kade IJ, Balogun BD, & Rocha JBT (2013). In vitro glutathione peroxidase mimicry of ebselen is linked to its oxidation of critical thiols on key cerebral sulphydryl proteins – a novel component of its GPx-mimic antioxidant mechanism emerging from its thiol-modulated pharmacology and toxicology. Chem.-Biol. Inter.206(1): 27-36.

Kade IJ, Paixao MW, Rodrigues OE, Barbosa NB, Braga AL, Avila DS, Nogueira CW, & Rocha JBT (2008). Comparative studies on dicholesteroyldiselenide and diphenyldiselenide as antioxidant agents and their effect on the activities of Na+/K+ ATPase and delta-aminolevulinic acid dehydratase in the rat brain. Neurochem. Res.33: 167-178.

Kade IJ, Paixao MW, Rodrigues OED, Ibukun EO, Braga AL, Zeni G, Nogueira CW, & Rocha JBT (2009). Studies on the antioxidant effect and interaction of diphenyldiselenide and dicholesteroyldiselenide with hepatic delta-aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase. Toxicol. in Vitro23: 14-20.

Katewa SD & Katyare SS (2003). A simplified method for inorganic phosphate determination and its application for phosphate analysis in enzyme assays. Analyt.Biochem.323(2): 180-187.

Kramer G, Woolerton Y, van Straalen JP, Vissers JP, Dekker N, Langridge JI, Beynon RJ, Speijer D, Sturk A, & Aerts JM (2015). Accuracy and reproducibility in quantification of plasma protein concentrations by mass spectrometry without the use of isotopic standards. PLoS One10(10):e0140097

Lonsdale D, Raulkner WR, Price JW, & Smeby RR (1969). Intermittent cerebellar ataxia associated with hyperpyruvic academia, hyperalaninemia, and hyperalaninuria. Pediatr.43: 1025-1028.

Lu Q, Cai Y, Xiang C, Wu T, Zhao Y, Wang J, Wang H, & Zou L (2021). Ebselen, a multi-target compound: its effects on biological processes and diseases. Expert Rev. Mol. Med.23: E12.

Macena JC, Renzi DF, Grigoletto DF, & Antunes Jr O dos R (2021). Biological potential of diphenyldiselenide/Potencialbiológico do disseleneto de difenila. Braz. J. Devt. 7(7): 74184-74203.

Maciel EN, Flores EM, Rocha JB, & Folmer V (2003). Comparative deposition of diphenyldiselenide in liver, kidney and brain of mice. Bull. Env.Contam.Toxicol.70: 470 -476.

Malcovati M & Valentini G (1982). AMP- and fructose 1,6-biphosphate-activated pyruvate kinases from Escherichia coli. Meth.Enzymol.90: 170-179.

Mallick C, Chatterjee K, GuhaBiswas M, & Ghosh D (2007). Antihyperglycemic effects of separate and composite extract of root of Musa paradisiaca and leaf of Coccinia indica in streptozotocin-induced diabetic male albino rat. Afr. J. Trad.Compl. Alt. Med.4 (3): 362-371.

Martino MR, Gutiérrez-Aguilar M, Yiew NKH, Lutkewitte AJ, Singer JM, McCommis KS, Ferguson D, Liss KHH, Yoshino J, Renkemeyer MK, Smith GI, Cho K, Fletcher JA, Klein S, Patti GJ, Burgess SC, & Finck BN (2022). Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Rep.39(4):110733.

McFarlane CR & Murray JW (2020). A sensitive coupled assay for measuring kinase and ATPase kinetics using ADP-specific hexokinase. Bio-Protocol LLC10(9): e3599.

Swanson MA (1955). Fructose-1,6-diphosphatase from liver. In: 13th ed. Methods in Enzymology Vol. 2. Academic Press Inc., New York, U.S.A. pp. 541-543.

Medlock AE & Dailey HA (2022). New avenues of heme synthesis regulation. Int. J. Mol. Sci.23(13):7467.

Mistry N, Mazer CD, Sled JG, Lazarus AH, Cahill LS, Solish M, Zhou YQ, Romanova N, Hare AGM, Doctor A, Fisher JA, Brunt KR, Simpson JA, & Hare GMT (2018). Red blood cell antibody-induced anemia causes differential degrees of tissue hypoxia in kidney and brain. Am. J.Physiol. Reg.Integr. Comp.Physiol.314(4): R611-R622.

Mukisa A, Kasozi D, Aguttu C, Vuzi PC, & Kyambadde J (2020). Relationship between blood lead status and anemia in Ugandan children with malaria infection. BMC Pediatr.20: 521.

Nagababu E, Gulyani S, Earley CJ, Cutler RG, Mattson MP, & Rifkind JM (2008). Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radicals Res.42(9): 824-829.

National Committee for Research Ethics in Science and Technology (NENT) (2018). Ethical Guidelines for the Use of Animals in Research. The Norwegian National Research Ethics Committees, Oslo; 1st edition, August 2018.

Nogara PA, Orian L, & Rocha JBT (2020). The Se…S/N interactions as a possible mechanism of δ-aminolevulinic acid dehydratase enzyme inhibition by organoselenium compounds: A computational study. Comp.Toxicol.15: 100127.

Nogueira CW, Barbosa NV, & Rocha JBT (2021). Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch.Toxicol.95: 1179-1226.

Nogueira CW & Rocha JBT (2010). Diphenyldiselenide: a janus faced molecule. J. Braz. Chem. Soc.21: 2055-2071.

Nogueira CW & Rocha JBT (2011). Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch.Toxicol.85: 1313-1359.

Nogueira CW, Zeni G, & Rocha JBT (2004). Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev.104: 6255-6285.

Ogun AS, Joy NV, & Valentine M (2022). Biochemistry, Heme Synthesis. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537329/

Olagunju JA (1990). Diaphragm muscle glycolysis in iron-deficient rats. Biosci. Res. Comm.2(2): 163-172.

Olagunju JA (1992a). Hyperalaninaemia: a detoxification process in iron-deficient rats. Biosci. Res. Comm.4(1): 15 – 20.

Olagunju JA (1992b). Nutritional iron-deficiency anaemia and the de novo synthesis of glucose in the rat. Nig. J. Nutr. Sci.13: 19-23.

Oshita M, Takei Y, Kawano S, Fusamoto H,& Kamada T (1994). Protective effect of ebselen on constrictive hepatic vasculature: prevention of alcohol-induced effects on portal pressure in perfused livers. J. Pharmacol.271: 20-24.

Pereira ME, Souza JV, Galiciolli MEA, Sare F, Vieira GS, Kruk IL,& Oliviera CS. (2022). Effects of selenium supplementation in patients with mild cognitive impairment or Alzheimer's disease: A systematic review and meta-analysis. Nutrients14(15): 3205

Pillai R, Uyehara-Lock JH, & Bellinger FP (2014). Selenium and selenoprotein function in brain disorders. IUBMB Life66(4):229-239.

Płoszczyca K, Czuba M, Chalimoniuk M, Gajda R, & Baranowski M (2021). Red blood cell 2,3-diphosphoglycerate decreases in response to a 30 km time trial under hypoxia in cyclists. Front. Physiol.2021: 670977

Posser T, de Paula MT, Franco JL, Leal RB, & da Rocha JB (2011). Diphenyldiselenide induces apoptotic cell death and modulates ERK1/2 phosphorylation in human neuroblastoma SH-SY5Y cells. Arch. Toxicol.85: 645-651.

Puntel RL, Roos DH, Folmer V, Nogueira CW, Galina A, Aschner M, & Rocha JBT (2010). Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore. Toxicol. Sci.117(1): 133-143.

Quispe RL, Jaramillo ML, Galant LS, Engel D, Dafre AL, Teixeira da Rocha JB, Radi R, Farina M, & de Bem AF (2019). Diphenyldiselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol.20: 118-129.

Radomska D, Czarnomysy R, Radomski D, & Bielawski K (2021). Selenium compounds as novel potential anticancer agents. Int. J. Mol. Sci.22(3):1009.

Ramot F, Brok-Simoni F, & Ben-Bassat I (1969). Glucose-6-phosphate dehydrogenase, hexokinase activities and ATP levels as a function of cell density in thalassemia and iron deficiency anemia. Ann. N. Y.Acad. Sci.165: 400-406.

Reitman S & Frankel S (1957). A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Path.28: 56-62.

Ritov VB & Kelley DE (2001). Hexokinase isozyme distribution in human skeletal muscle. Diabetes50(6): 1253-1262.

Sharma B, Ghatak S, Malhotra OP, & Kaushal NA (1995). Stabilization and characterization of phosphofructokinase purified from Setariacervi, a bovine filarial parasite. Helminthologia32: 15-23.

Silva APP, Alvés GG, Araújo AHB, & Sola-Penna M (2004). Effects of insulin and actin on phosphofructokinase activity and cellular distribution in skeletal muscle. An. Acad. Bras.Cienc. 76(3): 541-548.

Stingl H, Chandramouli V, Schumann WC, Brehm A, Nowotny P, Waldhäusl W, Landau BR, & Roden, M. (2006). Changes in hepatic glycogen cycling during a glucose load in healthy humans. Diabetologia49: 360-368.

Swanson MA (1955). Glucose-6-phosphatase from liver. Methods in Enzymology, Vol. 2. Academic Press Inc., New York, U.S.A. pp 541-543.

Vanderlinde RE (1985). Measurement of total lactate dehydrogenase activity. Ann. Clin. Lab. Sci.13(1): 13-31.

Whilhem EA, Jesse CR, Leite MR, & Nogueira CW (2009). Studies on preventive effects of diphenyldiselenide on acetaminophen-induced hepatotoxicity in rats. Pathophysiol.16: 31-37.

Zhang C, Wang H, Liang W, Yang Y, Cong C, Wang Y, Wang S, Wang X, Wang D, Huo D, & Feng H (2021). Diphenyldiselenide protects motor neurons through inhibition of microglia-mediated inflammatory injury in amyotrophic lateral sclerosis. Pharmacol. Res.165: 105457.


Full Text: PDF

Article Metrics

Abstract View : 34 times
PDF Download : 14 times

DOI: 10.57046/UAYN7053

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Proceedings of the Nigerian Academy of Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.